
IDENTIFICATION OF CONTACT THERMAL RESISTANCES IN 

NUCLEAR REACTOR FUEL ELEMENTS. 

1. ALGORITHM DEVELOPMENT 

E. A. Artyukhin, A. V. Nenarokomov, A. P. Tryanin, 

S. A. Utenkov, and V. V. Yakovlev 

UDC 62L039.517 

We examine the algorithms for the determination of the contact thermal resistance between a fuel and the fuel-element 
shells of nuclear reactors by solving inverse problems with optimum planning of nonsteady thermal experiments. We 
present results from the solution of methodological examples. 

INTRODUCTION 

In the operation of nuclear reactor fuel elements their structural elements (fuel and shell) undergo an entire range of physicochemical 

and nuclear-physical transformations. The fuel volume is altered as a consequence of thermal-radiation sintering, thermal expansion 

and cracking; the release of gaseous fission products from the fuel and their physicochemical interaction; the mechanical interaction 

of the fuel with shell; the change in the dimensions of the shell as a consequence of deformation and radiation growth; the change 

in emissivity and similar characteristics of the fuel and of the shell. All of these processes and their influence on the readiness 

and reliability of the fuel elements depend on the thermal regime in which these fuel elements are operating, and this is significantly 

dependent on the magnitude of the contact thermal resistance (CTR) between the fuel and the shell. 

Computational methods which take into account the above-enumerated processes [1], based on models of conductivity in 

the gap between the fuel and the fuel jacket, are in turn constructed on the basis of empirical data [2, 3]. Such models must be 

based on experimental studies of the magnitude of the CTR and on data with respect to changes in the latter during the process 

of irradiation under various regimes. For this purpose we have to measure the CTR between the fuel and the fuel-element jacket 

when testing is carried out in research reactors. 

The methods of studying such fuel elements, in use up to the present time, in research reactors, including the post-reactor 

studies in hot chambers, yield exceedingly tangential information with regard to the state of the clearance and the change in the 

CTR during the irradiation process. The specific procedure of internal reactor measurement imposes an entire range of limitations 

on the methods employed, and these will lead, in particular, to the impossibility of utilizing stationary methods in the determination 

of the CTR. A contemporary solution for this complex problem is built on resort to the approaches and methods of identifying 

systems with distributed parameters. The present study is devoted to the determination of the contact thermal resistance between 

a fuel and its shell jacket, involving the use of algorithms based on extremum methods for the solution of inverse problems. Such 

a problem has been studied in considerable detail in [4]; however, the case being analyzed exhibits a number of unique features. 

First of all, this process should be considered in a cylindrical coordinate system. Second, the distribution of temperature in the 

fuel element at the initial instant of time r = 0 is determined from the solution of the corresponding stationary heat-conduction 

problem. 
Let us examine the one-dimensional process of nonsteady heat exchange in a two-layered structural element, this process taking 

place over the time segment [0, rm]. We will assume here that there exists a point of ideal contact between the layers, and that 

the process of heat transfer in each layer is described by a nonlinear equation of heat conduction. The layers have been fabricated 

of various materials and exhibit thicknesses of A t and A2, respectively. 
The magnitude of the CTR is unknown in the solution of the inverse problem. For its determination, in addition to the 

mathematical model of heat conduction, the system must include additional temperature measurements at one or several points 

in the space of the design being analyzed. 
Questions relating to the existence of a solitary solution for the inverse problem (such as is being dealt with here) were investigated 

in [5], where it is demonstrated that in the one-dimensional case for the reproduction of the contact thermal resistance in a two-layered 

system it is sufficient, generally speaking, to carry out a nonsteady measurement of temperature at a single point in space. However, 

in order not to limit the algorithm for the solution of the inverse problem to utilization of only the minimum possible experimental 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 60, No. 3, pp. 478-487, March, 1991. Original article submitted March 

26, 1990. 

380 0022-0841D1/6003-0380512.50 �9 1991 Plenum Publishing Corporation 



information, it will be assumed in the future that the number N of heat sensors exhibits some rather arbitrary value and the solution 

of the inverse problem thus becomes possible with consideration of an excess in experimental data. Here  we will assume that the 

contact thermal resistance is a function of temperature. For the sake of determinacy, let this be the temperature at the point of 

contact from the side of  the fuel. 
Proceeding as in [4], we introduce the following notation: n 1, the number of  heat sensors at internal points within the fuel; 

nx represents that number within the shell jacket; Xji, the coordinate for the installation of the i-th sensor in the ]-th layer; i = 

ii nj, j = 1, 2. In this notation we present the measurement data in the following form: 

Traax (Xyi, ~)--[ j~( 'c) ,  i =  1, ny, ] = i ,  2. (1) 

Let us then formulate the mean square functional of deviation in the theoretical temperature values (at the points at which 

the heat sensors were mounted) from the experimental values: 

l 2 nj z m 

: :  5-Z Z(.! (r,,(x,,, + 
/=! i <  o (2) 

+ (Ts~ (Xj .  O) - -  fs~ (0)) ~) , 

w h e r e  TjiC2(ji, I ) ,  i = 11 nj, j = 1, 2 are the calculated temperatures at the heat-sensor locations. To determine the unknown characteristic 

R(T) let us construct a procedure for the minimization of functional (2). 

Let us introduce into our examination the fictitious layers whose boundaries pass through the points at which the heat sensors 

are installed. The original model of  heat conduction can then be represented as follows: 

Ci(T) OT~i 1 0 ( OTsl ] - -  - -  x" Lj (T) + Ss (x, % T S )  
O'c x~ Ox ~ / " 

X . i i - l < x ~ X s i ,  0 < x ~ q c m ,  i =  1, n j +  I, j - - 1 ,  2, 

Xl,o : lo, Xl,,,.,+t = X~.,o = ll, X.z ~=+i : l~, 

OTll (to, "~) @ D1Tu (lo, "C) = g (T), a1~.1 (Tu (Io, "c)) 

(3) 

(4) 

OTji (XLi  ' r ) =  OTs,i+~ (Xsi,  "r), i = 1, ns, ] = 1, 2,  
Ox Ox 

(5) 

Ts, (Xj~, ,r)= Tj~+I (Xj,, % i =  1, 17s, j - =  1, 2, 

0T1,7~ 1 ,--1 OT2 l 
kl (rl , ; , ,-l-1 ( /I ,  T)) (ll,  "C) := )~., (T2, , (1t, T)) (1t, ~)~ 

- -  R (T1,,~,+1 (l l ,  "~)) OTI"~'+I (li ,  "~) = T1,,, ,+1 (I1, "t) - -  T~. ~ (I1, "r), 
Ox 

a~).z (Tz,~,+I (i2,'r)) OT~'"~+I (L, z) + bzT.z ,~+~ (12, "r,) = q (z). 
Ox 

(6) 

(7) 

(8) 

(9) 

The initial distribution T(x, 0) is determined from solution of the steady boundary-value problem of heat transfer in the fuel 

elemem, this problem derived out of  (3)-(9), under the assumption that OTji/Or - 0, i = 1, nj + 1, j = 1, 2. 

Let us further make the assumption that the function R(T) gained some small increment AR(T).  The temperature Tji(x , r) 

will then change by 0(x, r). It can be demonstrated that the variation in the temperature 0ji(x , r), i = 1, nj + 1, j = 1, 2 satisfies 

the following boundary-value problem: 

C &3"j~ l a ( a g j ~  O T j i O ~ j  ~ ( O a T  j, 
_ _ _  ~ ~j + ~7 + ~; + & x'* Ox Ox ] 8x Ox 

+~7 ( Or,i l 2 ; ~, OT,i OS: Cf OT:i l 
t - 5 7  / + - -  ~ + o--r- - o, / ` %  

X j i - ~ < x . Q X i ~ ,  0 < x % % .  i =  1, n i +  1, ] =  1, 2, ( io)  
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al~l --~X 0011 (lO' '[) -t-( b~-l-a~3~;OTn(l~ ~:)-] On ( /o , /  "0:0, 
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(11) 

(12) 

(13) 

(14) 

= z~ ao,1 (h, "q + ;~i aT21 (t~, x) e2, (l. % 
Ox Ox 
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(15) 

+ ~?x~ OTl""~+XOx (11' "~) ) 61'7'~+I (11' ~) - -  ~10T~,~,+~Ox (ll, x)AR. = 

= ~1,,,,+1 (ll, x) - -  0..,~ (q, % 

a2)~2 002,,,~+.._________~1 (12, "0 + ( b2 q- a2Z2 OT~,~,+I (12, "0 ) O~.,n,+l (12, x) = 0. (16) 
Ox Ox 

The initial distribution 0(x, 0) will then also be determined from the solution of the steady boundary-value problem which can 

be derived if we assume that OOij/Or - 0, i = 1, nj + 1, j = 1, 2. 
Using the conditions of steadiness with respect to the expansion of the Lagrange functional [4] and equating to zero the 

corresponding coefficients, we obtain the following conjugate boundary-value problem: 

_ _ _  x ~ ~ J  _ " O ~ j ~  

O~ x ~ Ox Ox ] Ox x 
[ ,~ OS, + \ ~  z j + _ ~  ! ,s,. (17) 

X L i _ l < x <  Xji, O ~ x <  xm, i =  1, ns+ 1, ] = I ,  2, 

al)~1 T 011'11 (10' T)-J[- bl - -  al ll 1 ) ~t~11(/o, ~ ) =  0, 

~ \---~x ( 0r  (Xsi, x) 0~L~+10~_x.___ (Xii, "0) = Tj~ (Xji, "r) - -  [Ji (T), 

i----l, nl, ] = 1 ,  2, 

(18) 

(19) 

Cj, (Xm "0 = Cs,~+~ (Xj~, x), i =  I, ns, ] = 1, 2, 

0'21 (11' "0= ( 1-[- • ) 

( 2 0 )  

(21) 

3s2 
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(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

~Ji(XJi)  = ~3,i+1 (XLi), i = 1 ,  ny, ] = 1, 2, (28) 

R~o dOA3,1(ll) -- ( I @ v ) (29) 
dx ~ )v2 /~ ~2i  ([1) - -  (D1 nt+l ([1), 

dT2 1(ll, O) R' )V 1 d(~)l,n,+l ([1) = ~,2 ~1 ' + 1 - -  

dx dx 

'v L~ R I dq)2a (ll) ( v dTl n~+ 1 R' 
- l-7 / d~ -~ ~'~ d~' (l~, O) + 

%" 'V 'V 2 ) 
+ ~ ).2 - -  ~ gl - -  17 ~,IZ2R q)2: (11), (30) 

a2L dq)z .~+l (12) ( v ) 
�9 " t2 (31) 

The singularity in boundary-value problem (17)-(30) lies in the fact that it represents a system of equations for two conjugate 
variables Cji(x, r) and ~ji(X), solved jointly. The variable Cji(X) is associated with the initial distribution of variations in the temperature 
0ji(x, o). 

Using relationships (17)-(30) and (10)-(16), we can represent the variation in the minimizing functional (2) in the form 

TDI 
6J-~-! AR~IOTI'n:I-IOX ([1' ~) i 0q]'21 (/1~ ~) V ~ o  ' ) 

- -  �9 " Ox ll q"21 ([1, T) dr @ 

( ' ' dfD21 ([1) v )~2(D21([1 ) ) AR.  + 2~10T, ,,~• (ll, O) Zo dx 

We will approximate the unknown function R(T) by the expression 

(32) 

ttz 
R (T) ~ ~ Rl~q~,: (T), 

k=l  
(33) 

where ~Ok(T), k = 1, m is a system of basis functions. 
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The increment in this function is written as follows: 

AR (T) = ~ AR,,% (T). (34) 
h = l  

Utilizing relationships (32) and (33), we can represent the formula for the components of the gradient in the nonclosure functional 

(2) with respect to the components R k, k = 1, m in the form 

' ~'~ 0T1,,,+1 (/1, ~) [ ate1 J~k= ,I )~i [ ~. (11, x) - -  
o ax - ~ x  

(35) 
___v_ X 2 ~  (I~, z) % (TI,,,,+~ (l~, ('~))) d~ + 

ll 

+ xl dTl'"'+l (ll, 0) (~o. dq)~ _~ ) dx ~ ( /~ ) - -  " 2~2 (I3~ (l~) % (TI,,~,+ x (l~, 0)). 

If we know the gradient of the nonclosure functional, we can construct an iteration algorithm for the sequential refinement 

of the sought function R(T) on the basis of the method of conjugate gradients: 

where 

~ s + l  = "~s _ _  ,ys~s, 

I~ ~ = o; I~ ~ = < 0 ' )  ~ - (Y-')~-~; ( 7 ' ?  > ~ ' , , / I I  (7 ')~-~II~., .  

For the descent parameter we can use the linear estimate [6] 
9 n j  z m 

\ "  ~ f (rs, (x~,, r) - ::~ (~)) o:, ( x  j,, ~) a~ 
j = l  i ~ l  0 

- -  o n s r m - - -  

X' ~ j" (eji (Xyl, "0) 2 d~ 
]~1 i ~ l  0 

2 n j  

~ (r~, (Xj~, o) - -  h, (oi) eji (xj~, o) 
]=I i = l  

2 n j  

] = I ~ =  i 
n~ 

where the function Oji(x, r) satisfies boundary-value problem (10)-(16) when 3R~, = ~i G~,qm, (T). 
k = l  

(36) 

(37) 

We should note that the algorithm for the solution of the inverse problems R = const can be significantly simplified by carrying 

out the process of successive approximations without calculating the gradient of the nonclosure functional [6]. In this case, for 

each iteration we have the correction factor AR. We can demonstrate that this correction factor is calculated from formula (36), 

where the functions Oji(x, r) are determined for ~ = 1. 

This algorithm for the solution of the inverse problem has been attained in the form of a program complex which represents 

a modification and expansion of the complex described in [4]. 

In the parametric identification of the heat-exchange processes the achievement of maximum reliability and accuracy for the 

derived results is an important problem. An effective means of solving this problem is based on the utilization of approaches and 

methods from the theory of experimental planning [7]. In this case, an a priori estimate of the quality of the conducted experiments 

is undertaken and a preliminary search is conducted for the experimental conditions under which the chosen quality criterion reaches 

its maximum value. 
With regard to the determination of the contact thermal resistances, we are confronted, in particular, with the problem of 

optimizing the temperature measurement scheme. It is necessary to choose a measurement scheme such that the maximum accuracy 

in the solution of the inverse problem is achieved. In carrying out direct concentrated dynamic measurements of temperature at 

N points in space with coordinates X i, i = 1, 'N during the experiment, we can represent the measurement plan by means of the 

following vector [7]: 

- { N ,  x}, x = {x,}f .  (38) 
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Selection of  the measurement plan that is optimum in this sense reduces to the solution of  the extremum problem 

~o == Arg max q)(M (~)), (39) 

where r is the selected criterion of quality, which can be constructed on the basis of  the information matrix [7] 

M(~)={(1)j,~}, /, k =  l, m, (40) 

where ej t~= ~-i=]~l. f a~j(X~, "r)6"l~(Xj, "r)d'~; E is the set of permissible measurement plans; 0k(x, r) = 0T/0Rk, k = 1, m are 

the sensitivity functions, R k is the vector component of the unknown functions, formed subsequent to the parametrization of an 

unknown function R(T) in the form of (32). In particular, we can use the eigenvalues of the information matrix k = 1, m, and 

as the criteria to analyze the following quantities [7]: the reciprocal of  conditionality 1/C(M) = 4J~min/#max , the square root of 
/7Z 

the minimum eigenvalue ~4-~Tmi n, the determinant of the informtion matrix det M = FI ,a~ etc. 

The permissible plan set E is formed on the basis of  results obtained from an investigation into the conditions of single-valued 

solvability for the planned inverse problem. This set is defined as follows: 

E = { ( N ,  X ) : N ~ N ~ ,  Xi~[10, 121, i =  1, N,}, (41) 

where Nmi n is the minimum necessary number of heat sensors at which singularity in the solution of  the inverse problem is achieved. 

In the case under consideration Nmi n = 1 [5]. 

Owing to the nonlinearity of boundary-value problem (3)-(9) the sensitivity functions tgk(X, r), k = l, m and, consequently, 

the normalized information matrix M depend on the vector of the parameters {R k} 1 m sought in the inverse problem. Only local-optimum 

planning of  measurements is therefore possible by resort to a priori information on vector 1~ [7]. 

An iteration computational algorithm for the solution of  one-dimensional problems of optimum planning is offered in [7] 

and it is based on the numerical solution of  the corresponding boundary-value problems and the finding of  an optimum measurement 

plan on a fixed finite-difference grid. 

For purposes of  analyzing the effect of various factors on the final result in the experimental-theoretical determination of 

the contact thermal resistances we conducted computational experiments simulating the complex procedure of identification. 

We analyzed contact heat exchange between the fuel and the external shell jacket of  a cylindrical rod heat-evolving element. 

The mathematical model of the analyzed heat-exchange process has the form of (3)-(9) with consideration given to the fact that 

$I (x, ~, TI) , -  q~ (x, x), (42) 

82 (x, z, T ~ ) =  0, (43) 

a2 -- - -  1, bl = 0, g(x) = O, (44) 

az = - -  1, b~ = ~ (~), q ('~3 = - -  ~ ('~) T~ (r). (45) 

Here qv(X, r), cffr), Te(r), CI(T1) , C2(T2) , AI(T1), and )~2(T2) are known functions. The nonsteadiness of  the fuel-element thermal 

regime is governed by the change of  energy release qv(X, r) over time in the fuel or by the conditions of  heat exchange at the external 

boundary a(r),  T2(r ). The thermophysical characteristics of  the fuel and material and of  the shell, as used in the computations, 

are presented in [8, 9]. The release of  energy in the fuel was calculated so as to account for radial nonuniformity [10] and the integral 

release of  beat, determined by means of  thermal neutron detectors. The remaining initial data were assumed to be the following 

[11]: 10 = 0.9 ram, 11 = 2.975 ram, 12 = 3.45 mm, a = 1.36-104 W/(m2.K), T e = 773 K. 

It was the procedure of identifying R = const that was initially simulated. Figure 1 shows the results from the solution of 

local-optimum measurement planning problems for three a priori given values of the unknown parameter R under the assumption 

that the measurements are equally accurate (the dispersion in the measurement errors was assumed to be 02 = 1 for the entire 

range of  measured temperatures). In this case the information matrix degenerates into the scalar quantity M, which serves as the 

criterion of  optimality. The derived results show that the most rational solution for the inverse problem from the standpoint of 

accuracy is the positioning of  the heat sensor in the fuel, in particular at the surface of  the inside channel where X = l 0. It is precisely 

at these values of  X that we achieve the maximum value for the criterion M. 

To test and confirm the measurement planning results presented here for temperature, we undertook a parametric analysis 

of the accuracy of  the solution for the inverse problem of restoring the parameter R. The solution of  the model inverse problem 
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Fig. 1. Change in the planning criterion M as a function of the heat-sensor position coordinate X for various 
values of  R, K/(W/m2): 1) R = 0.125.10-'3; 2) 0.2-10 --3 3) 0.3-10 "-3. X, ram. 

Fig. 2. The error ~R in the reproduction of R for various heat-sensor positions and variation in the values 

of  A m and R, K/(W/m2): 1) A m = 0; 2) 0.03; 3) 0.05; 4) R = 0.125-103; 5) 0.2.10-3; 6) 0.3.10- 3. 

Fig. 3. Change in the relative criterion ~P as a function of the heat-sensor position coordinate X for various 

numbers of  approximation parameters: 1) m = 3; 2) 4; 3) 5. 

Fig. 4. Maximum value of the optimality criterion ( ~4"~min)max as a function of the number of  approximation 

parameters. 

was reproduced both for "exact" values of  the temperature "measured" in the dynamic regime, and with consideration given to the 

possible random measurement  errors. The errors were simulated by means of a random number generator. The results from the 

computational experiment in the form of  a relationship between the relative error in the solution of the inverse problem and the 

location coordinate X of the heat sensor are shown in Fig. 2 (~R = ~ - -  Rexact[/Rexact) �9 

The problem of identifying the contact thermal resistance as a function of temperature was then analyzed. For the a priori 

information regarding the unknown characteristic R(T) we specified a constant value for R exact = 0.2.10 -4  (K.m2)/W. The remaining 

initial data were the same as before. The results obtained in our search for the opt imum positioning of a single heat sensor while 

varying the number of  approximation parameters are shown in Fig. 3, where we find the change in the relative optimality criterion 

~/,, = 4 " f f / ( ~ ) m a x  as a function of the location coordinate of  the heat sensor. We see that when m = 3 the sensor should be 

positioned inside the fuel, and when m is increased the point of  opt imum sensor location is displaced toward the boundary between 

the fuel and the protective jacket, but it nevertheless remains inside the fuel. The change in the maximum value of the criterion 

( ~4"~min)max with an increase in m is shown in Fig. 4 and suggests intensive impairment in the conditionality of  the inverse problem 

with an increase in m. 
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inverse problem (b): 1) exact measurement of f(r), K; 2) measurements with errors; 3) specified value of 

R, K/(W/m2); 4) solution with utilization of exact measurements of fir); 5) solution with measurement containing 

errors. T, sec; T, K. 

As an example to confirm the planning results we undertook to solve the model inverse problem of determining the function 

R(T) given in the form of a linear function of temperature. The number of approximation segments in this unknown function 

was assumed to be equal to three. Figure 5 shows the results from the solution of the inverse problem. 

CONCLUSIONS 

The purpose of this study is to describe the developed algorithm by means of which to analyze and process the data of the 

nonsteady thermal experiment in the identification of the CTR between the fuel and the nuclear-reactor fuel-element shell jacket. 

An iteration algorithm has been constructed for the numerical solution of the inverse heat-conduction problem based on minimization 

by gradient methods of the nonclosure functional. The gradient of the functional is calculated in conjunction with the solution 

of the derived boundary-value problem for the conjugate variable. The iteration process is stopped on the basis of the nonclosure 

criterion. 

We present a formulation of the problem of optimizing the temperature measurement scheme. An algorithm for its numerical 
solution is constructed. 

By means of the developed algorithms for the solution of the primary mathematical problems of identifying the CTR and 

the corresponding program we have conducted computational experiments to simulate the complex procedure of identification. 

The derived results confirm the utility of the mathematical apparatus created here, and the possibility of its effective use in carrying 
out experimental-theoretical research into contact heat exchange in fuel elements. 

The method of carrying out test-stand experiments, the result from the treatment and analysis of experimental data, these 
will all be dealt with in a subsequent portion of the present study. 

NOTATION 

T, temperature; r, time; x, space coordinate; N, number of heat sensors; f(r), measured temperature values; X, coordinate 

of heat-sensor location; C(T), volumetric heat capacity; ~(r), thermal conductivity; S(x, r, T), heat source; g(r) and q(r), external 

thermal effect; R(T), contact thermal resistance; A, thickness of layer; J, nonclosure functional; ~b, conjugate variable; tgji , temperature 

variation; j, heat-sensor number; i, layer number; u, coordinate system index. 
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AN ALGORITHM FOR A NUMERICAL STUDY OF THE HYDRODYNAMICS 

AND EXCHANGE OF HEAT IN A TWISTED CHANNEL OF COMPLEX 

CROSS SECTION ON THE BASIS OF THE FINITE-ELEMENT METHOD 

A. A. Kochubei and L. G. Tatarko UDC 532.5:536.24 

We propose the approximation and an algorithm for a numerical solution of the heat and mass transfer problem in 
a twisted channel of complex transverse cross section. 

One method of intensifying the processes of heat and mass transfer in tubes and channels involves the twisting of the heat-carrying 

coolant in the inlet section with the aid of various turbulators. The resulting rotation of the flow in this case is retained over some 

initial segment of the channel, the length of this segment dependent on the shape of the transverse cross section, the initial kinetic 

energy of fluid rotation, its physical properties, the condition of the wall surfaces, etc. In a number of cases, the effect of these 

factors is so significant that the method by means of which the flow is twisted at the inlet to the channel becomes almost ineffective 

as a consequence of the rise in the level of energy expended on the pumping of the coolant and on its twisting, relative to the increased 

release of heat. 

An alternate method of setting the flow in the rotation involves the use of channels with an extended twist (twisted channels), 

producing the effect of fluid rotation over the entire channel length. The efficiency achieved by such a method of intensifying the 

transfer processes, based on a series of complex experimental investigations into the hydrodynamics and heat and mass exchange 

in equipment with coiled tubes of oval and trefoil profiles, is demonstrated in [1-3]. At the same time, the literature contains no 

description of systematic approaches to the numerical modeling of transfer processes in twisted channels of complex cross section. 

A number of computational results [4, 5] have been obtained by the method of finite differences, while the computational algorithms 

constructed on the basis of this method have found their application limited to channels of classical cross-sectional shape (circular, 

rectangular). 
The present study is devoted to an outline of the computational algorithm with which to study the processes of transfer in 

channels of complex cross section with longitudinal twist, using the finite-element method (FEM). By using this method is becomes 

possible significantly to expand the spectrum of modeled processes from the standpoint of diversity in the geometric shapes of the 

channel cross sections, to formulate a unique approach in the construction of discrete transfer-equation analogs, etc. 

The processes of hydrodynamics and heat exchange in a channel of arbitrary transverse cross section for the case of the laminar 

flow of a viscous incompressible fluid, the absence of heat sources or sinks in the flow, and negligibly low viscous dissipation, are 

described by the following system of equations: 
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